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I. INTRODUCTION

During the preceding contract year, three tasks have been undertaken.

They are:

1) Applications Development System (ADS) Analysis,

2) Algorithmic Development,

and 3) Evaluation of Technical Reports.

Task 1 (see Section II) consisted of a detailed study of the needs of EOD

with respect to an applications development system (ADS) for the analysis

of remotely sensed data; followed by an evaluation of four existing systems

(ERIPS, ASTEP, LARSYS batch, and LARSYS 3) with respect to these needs; and

concluded with a set of recommendations as to possible courses for EOD to

foll-ow to obtain a viable ADS. Task 2 (see Section III) comprised several

subtasks of which three were continuations of projects initiated during our

first year's contract. These include two algorithms for multivariate density

estimation, a data smoothing algorithm, a method for optimally estimating

prior probabilities of unclassified data, further applications of the modified

Cholesky decomposition in various calculations, and a few other projects.

Little effort was expended on task 3 (see Section IV) due to a shift in.priori-

ties mostly necessitated by the increased effort devoted to task 1. However,

two reports were reviewed.

This report summarizes both the efforts and the findings of the above

project. Each of the tasks are described in the following sections.



II. TASK 1: Applications Development System Analysis

This study (see the Task 1 Final Report) describes the results of a

detailed study of the needs of EOD for an applications development system

(ADS), including a detailed evaluation of four existing systems (ERIPS,

ASTEP, LARSYS batch, and LARSYS 3) with respect to these needs. Suggested

courses of action are proposed for the EOD to pursue.

The original task definition in the contract called for:

1) Developing a set of design goals for an applications

development system (ADS),

2) Evaluating ASTEP and the LARSYS batch programs to

determine whether either met these goals,

3) Recommending courses of action for the future of these

systems:

a) If neither system meets the design goals,

develop a system design for an ADS that does;

b) Determine the mutual impact of this system on

either the IBM 360/75 under RTOS or the UNIVAC

1110 under EXEC 8;

c) Develop a recommended approach to the development

of a data analysis ADS at JSC,

4) Determining whether a terminal to ASTEP, a LARS terminal,

or set of batch programs is the most desirable method of

transporting remote sensing ADP technology to an agency

establishing a program in remote sensing.

This task definition was later modified to include ERIPS and LARSYS 3

in the evaluation study and to exclude item 4 above.
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It is important to remark here that some specific constraints of the

EOD's were not taken into account in this study. Such considerations not

involved in any quantitative fashion in this analysis include:

1) cost of implementing recommended modifications,

2) system nerformance and response as a function of number

of users,

3) availability and canacity of hardware,

and 4) snecific hardware implementations.

The method emnlovyed for conducting this study was to adopt a "top-down"

approach to the evaluation process. This consisted of:

1) Developing design goals for an ideal ADS. These goals

represent general areas of interest that such a system must

address, and are not of themselves nrioritizable.

2) Detailing supporting design objectives for those design goals.

These objectives are specfic functional capabilities that

an ideal ADS should have.

3) Prioritizing these design objectives with respect to the

needs of EOD.

4) Rating the various systems on each of the design objectives

to indicate how well each satisfied the requirements of each

objective.

5) Recommending alternative courses of action for the EOD to

follow based on the above findings.
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Before discussing further the methodology employed and the 
results of

this task, it is important to establish a framework for the ideal ADS.

Such a system will be used to develop and test new algorithms and procedures

for various remote sensing applications. Its basic characteristics should

include that it be easy to use for a wide variety of personnel, accessible

and responsive to users, reliable, and as flexible and complete a system

as possible. The system must serve two kinds of users - production and

techniques development personnel. The production user needs to be able

to efficiently process large amounts of data using state-of-the-art

techniques. He requires that results be in form suitable for presentation

or further analysis. The techniques development person, on the other hand,

needs a system where he can thoroughly test and evaluate new 
algorithms and

techniques. The system thus should be easily modifiable and require the

user to have only a minimum of knowledge of the internals of the system.

The user should be able to easily add, delete, replace, or modify any of

the algorithms in use for his own purposes, while assuring the integrity

of the standard system.

The design goals were established to present general areas that a

TDS should address. These areas are, in summary:

i) Combination of production and test systems in a unified framework,

ii) Simplification techniques for system maintenance and enhancement,

iii) Data and system management facilities,

iv) Graceful degradation features,

v) Convenience features,

vi) System measurement and evaluation features,

vii) Basic system analysis functions.



-5-

These goals as such are not prioritizable since they do not represent specific

functional capabilities. The design objectives, on the other hand, are

prioritizable. They are specific canabilities for an ideal ADS to have.

These objectives were then prioritized according to the needs of the EOD

program objectives. Ratings of from one to four were assigned where the

ratings are:

Prioritv Description

1 Necessary to achieve EOD program objectives

2 Necessary to achieve a high level of EOD's
program objectives

3 Desirable feature

4 Questionable desirability

The various sys'tems were then rated on each of the design objectives. Ratings

were assigned from zero to five in the basis of how well each system functionally

met each objective. The rating codes and their meanings are:

Rating Meaning

5 Exceeds requirements of this objective

4 Meets all requirements of this objective

3 Satisfies most of the requirements of this objective

2 Satisfies some of the requirements of this objective

1 Satisfies only a small portion of the requirements
of this objective

0 Does not have any such caoability as specified
by this objective.

The results of this evaluation process comprise the bulk of the Task 1 final

report. These findings are briefly summarized below.
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ERIPS possesses several key features, notably an extensive, interactive

imaging capability and an abundance of user convenience features. Though

ERIPS is highly modular, it was not designed for modification by the user

community: most of the coding is in a specially designed assembler language

and the programming skill necessary to understand the internals of the

system are far beyond the average user.

ASTEP, on the other hand, was written mostly in FORTRAN V and the

coding is relatively easy to decipher. However, no modification aids for

the user are available and-documentation is not very extensive. Though

ASTEP can be run in an interactive mode, the use of tapes is limited by

operational difficulties and, thus, system use is limited. Additionally,

no interactive imaging capabilities exist.

The LARSYS batch nrograms were also written mostly in FORTRAN V.

However, very little documentation exists on these programs, thus making

modification a difficult chore. The most serious problem with these

programs is that though many functions are available, they are not in a

unified system, which creates a myriad of problems for users and

programmers alike. The lack of interactive and interactive imaging

capabilities further hampers the utility of these programs.

LARSYS 3 possesses many of the essential features of the ideal ADS.

It too is written mostly in FORTRAN, and extensive documentation is readily

available. A variety of modification aids eases somewhat the user's task,

but other such features do not currently exist. The'system is relatively

easy to use, has several modes of operation, and a training program is

available. An interactive, imaging device existsat Purdue, but none are

supported elsewhere. It is presently lacking in basic systems analysis

functions available, but the structure exists for later adding these.
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Thus, in terms of which system comes closest to meeting the requirements

for anADS, LARSYS 3 appears to be the most suitable in principle. If LARSYS 3

is to be used most effectively as an ADS, it is worth examining what modifications

are necessary to further enhance its utility, and how difficult would such

modifications be to make. This study would indicate that modifying LARSYS 3

in several specific areas would producean ADS which would satisfy most of

the needs of EOD. The major areas of modification include adding more

analysis functions, adding a more extensive imaging capability, improving

the modifiability characteristics of the system, probably converting the

system to run under the IBM Time Sharing Option (TSO), and installing it

on IBM 370/158 or 168. These latter two modifications are to allow EOD to

have their own system locally with mainline IBM support and file compatibility

with other IBM computers (because of using TSO rather than CMS). Compared

with operating remotely from Purdue, this would eliminate difficult problems

of supporting remote interactive imaging devices, transferring bulk data

over long distances, configuration control and future grovwth of the system,

and overloading the system at Purdue. This may well represent the best

courses of action for EOD in terms of capabilities for satisfying their

needs foran ADS.

If the above is not possible, one alternative method would be to provide

an interactive image display tied into the LARSYS 3 system at Purdue. This

would require intelligent (perhaps specially designed) terminals to effectively

provide this ability over the long distances involved,and high bandwidth

communication lines. Other modifications to the system as suggested above

could be made to LARSYS to increase its utility. However, difficulties may

be encountered in the areas of overloading the system and transportation of

data back and forth. Such a configuration would have a substantially lower

throughout and turnaround capacity, but may be suitable for relatively low

volume demand.
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Two other possiblities for an interactive ADS suggest themselves:

build an entirely new system based on the ideal design goals and objectives

contained in the Task 1 report, or radically modify the internals of ERIPS.

Developing a new system based on the established design objectives would

be a very costly project both in time and money, but it would probably

provide a very effective means of doing techniques development work.

Modifications necessary to effectively utilize ERIPS as anADS consist of

establishing terminals in Building 17 and providing users with the capability

to work with the internals of the system. The latter would entail re-

programming all algorithmic routines into high level language; providing

interfaces to other system routines which would allow users to perform

such tasks as menu generation using only the high level language; and

adding numerous other capabilities to the system. We do not highly

recommend this approach since it appears that a relatively large amount

of effort must be expended, and the resulting system would still not be

entirely satisfactory from the modifiability standpoint.

Modification of either ASTEP or LARSYS batch is not recommended. The

basic structures of both of these would not be able to accomodate the

necessary modifications. However, parts of these systems, particularly

some of the algorithms, could be used with minor modifications in developing

a new system or as additional functions in LARSYS 3.
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III. TASK 2,; Algorithmic Development

Non-parametric density estimation:

Two methods of attacking this problem are being investigated. The aim of

these projects is to provide a computationally viable way of estimating

multivariate density functions from relatively small samnle sizes, and then

to devise a classifier using this model rather than the standard Gaussian

one. Such a classifier could significantly increase classification accuracy

and also enable one to avoid snlitting and later recombining multimodal classes.

The present efforts are directed towards estimating the densities with

little concern being given to computational efficiency. It is felt that

once such algorithms can be effectively used, methods for greatly increasing

their efficiency will be developed or special purpose hardware could be

designed.

a) This algorithm (see the "Estimation of Multivariate Probability Density

Functions Using B-Splines" by J. 0. Bennett) estimates a p-dimensional

density function given n random p-vectors of data. The data is first

transformed to make it pseudo-independent (the covariance matrices are

transformed into identity matrix ). Then a p-dimensional density kernel

estimator is used with a n-fold tensor product of B-splines as basis functions.

The estimator is proven to be consistent in the integrated mean square error

sense.

This method developed from an earlier algorithm - spline smoothing of

histograms. The difficulty with the previous method was that in many

dimensions, histogramming becomes an arduous task because of the number

of bins involved. Thus, though this algorithm functioned quite well in

one dimension, the results were not readily extendable to the multi-

dimensional case. The new algorithm avoids the histogramming problem entirely.
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All of this leads to an algorithm which yields a "good" estimate of a

multivariate density function even with small sample sizes of training 
data.

This algorithm has been implemented and tested using random numbers from 
a

variety of distributions. Performance has been quite satisfactory. It

has also been installed in the version of LARSYS operating on Rice University's

IBM 370/155 to compare it with Gaussian maximum likelihood classifier.

Results of these tests showthat, though the B-spline estimator is relatively

slow, its performance on "Gaussian-like" data is comparable to a Gaussian

estimator; whereas on other distributions (e.q., bimodal), its performance

is significantly better.

The algorithm as presently implemented in the classification section

of LARSYS is slow. This is mainly due to the fact that the estimate of

the value of the density function of a class for an arbitrary data point

involves (1) a rotation of the data vector, and (2) the calculation of the

value of a cubic B-spline for each dimension and each data vector from the

training samples. For large training sample sizes, the second of these

features can entail a very large amount of computation. However, a few

points suggest ways for alleviating this problem. First of all, cubic

B-splines have finite support and thus need not always be explicitly

evaluated. Also, schemes for ordering the training data can be used to

avoid performing many of the computations. In addition, for many applications,

one can use linear basis functions instead of cubic, thus considerably reducing

the number of computations necessary.

At this point, we can suggest guarded optimism for the applicability and

usefulness of this algorithm in remote sensing applications. More testing with

remote sensing data needs to be done to determine how generally successful the

algorithm is in the environment. Improvements to this algorithm are currently

being investigated.



b) In this study we consider the problem of estimating the probability functions

.< L1 [a,b] which gave rise to the random samples x1,x 2 , ... ,x .

The interval [a,b]i may be either infinite or finite.

Recall that by L(v) , the likelihood that v Ll[a,b] gave rise to

the saoles x x,x ... ,x , we mean

N

L(v) = FT v(xi)
i=l

Let S be a manifold in L [a,b] . By the maximum likelihood estimate

corresponding to the samnles l, ... ,xn } and the manifold S, we mean the

solution of the following ontimization problem:

maximize L(v); subject to

b

v f S, v(t) 2 0 Vt [a,b] and J v(t) dt = 1
a

It is well-known that the narametric likelihood estimate (S is finite dimensional)

is well defined. However, a finite dimensional manifold does not approximate

well. Hence it makes sense to consider nonparametric maximum likelihood

estimation (infinite dimensional S). Clearly, if the manifold S can approximate

the Dirac delta function, i.e., contains nonnegative functions whose support

is a given small interval centered at x E [a,b] , integrate to 1 and have

arbitrarily large values at x, then our optimization problem has no solution.

Mioreover, this aprroximation prooerty is enjoyed by most infinite dimensional

manifolds in Ll[a,b] ; hence, we should not expect the nonparametric

maximum likelihood estimation problem to have a solution. The situation in

nresent-dav annlications is actually worse, for it is often the case that in
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the parametric case we choose S from a sequence of manifolds {Sm}

where the dimension of Sm is m, Sm c Sm+ 1  and Um Sm  ism=l

dense in Ll[a,b] ; hence the problem is definitely unstable and

somewhat ill-defined. Namely we are motivated to choose m large so that

we can better approximate the probability density giving rise to the

samples; however, for a large m the problem approximates a problem which

has no solution.

The previous remarks motivated the maximum penalized likelihood

estimate; which consists of replacing the functional L in our optimization
A

problem with the functional L defined by

A N 2
L(v) = II v(xi) exp (-Ilvl )

i=l

where the norm I l[is some anpropriate norm on the manifold S. We

consider many interesting maximum penalized likelihood estimators and

show that they are well defined. We also show that some maximum penalized

likelihood estimators are splines and give some numerical examples.

(See the technical report "Nonparametric Maximum Likelihood Estimation

of Probability Densities by Penalty Function Methods" by G. F. de Montricher,

R. A. Tapia, and J. R. Thompson).

Use of Spatial Information:

Using interpolation polynomials of odd degree, a method of detecting and

correcting errors in equally spaced data is presented. This method permits

one point to be corrected without contaminating good points. To each point,

the method associates an error that measures the distance between this point

and the polynomial that interpolates certain neighboring points. By

selecting the points with the largest error and moving it so that the error
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decreases, a smoother set of data is produced. The method is said to be

local because if just one point is bad, it is going to be detected and

corrected without disturbing its neighbors. By successively selecting

the points with the greatest error and modifying them, smoother data is

produced. To measure smoothness and to give another interpretation to

the error of point, we use the fact that the distance between a point and

the polynomial of degree 2k-l that interpolates its 2k neighbors is the

2k-th divided difference. Therefore, by smoothness, we understand the

summation of the squares of the k-th divided differences of each point,

and by moving the point with the greatest 2k-th divided difference, the

smoothness will decrease the most. It is proved that ultimately the method

converges, therefore the possibility,of moving one point back and forth

is excluded.

By preprocessing some of the data, a threshold error can be found

beyond which data is said to be smooth. This error is given in terms of

the ratio between the average of all the point errors of the original

data and maximum point error in each iteration. Another interesting

feature of this method is that it simulates the fairing or smoothing of

data points as performed by a human. In such cases, the method will smooth

the data until the error associated with each point is impossible to detect

by human sight. The value of this minimum error is furnished by modern

psychology.

This method, when applied to C-1 flight line data, improved the

performance of classification in each of the different classes considered

by approximately 5 percentage points. Here each channel and line of pixels

were independently smoothed, but the method is readily extendable to smoothing

in both physical dimensions.
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It was then compared with spline smoothing. In addition to being

considerably faster, our method yields more consistent improvement in

accuracy whereas spline smoothing sometimes oversmoothes the data (see the

report "Error Detection and Data Smoothing Based on Local Procedures" by

V. M. Guerra).

A new approach to the problem of estimating proportions:

The problem of estimating acreages or proportions of the several crops

under consideration has received attention recently in the research literature.

In some acreage estimation problems, it is realistic to assume that the

signatures of the several classes have well-known statistics, while their

proportions are unknown. In estimating the acreage of wheat, for example,

we can model the problem as a two class case, where in class 1 we have wheat,

and in class 2 everything else. The basic difficulty in estimating acreages

lies in the fact that the estimate must be based on unclassified noisy data.

If the data are classified with zero error probability, the problem is

trivial, and a simple "relative frequency" estimate is intuitively and

theoretically satisfying. In order to have Bayes classification rule,

knowledge of the nrior probabilities (or proportions) is necessary. On the

other hand, in order to estimate the prior probabilities we need to classify

a sufficient amount of data. Hence, in order to have a decent performance

in classification and estimation of priors, it is profitable to look at the

coupled problem of Bayes classification and simultaneous estimation of

prior probabilities.

A report has been published on this subject, with the title "Optimal

Design with Unknown Priors" by D. Kazakos. In this report, a sequential

scheme for simultaneous classification of data and updating the estimated

prior probabilities is pronosed and analyzed. The probability density

functions under each of the M classes are assumed known, and the prior
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probabilities are assumed unknown and sequentially estimated. It is proved

that the scheme converges to the true value of the prior probabilities,

and hence the adaptive classification scheme converges to the Bayes classifier.

Furthermore, a significant property of the scheme is that the error variance

of the estimate of the prior probabilities converges to zero as N-1

where N = number of observations. This is significant, because even if we

had a set of N perfectly classified observations, the error variance of the

relative frequency estimate would converge to zero as N-  . The recursive

form of the estimation scheme makes it attractive for situations where the

proportions are varying. The method can "track" slowly varying proportion

vectors.

Other variations of the proposed method are currently under investigation.

In a forthcoming report, theoretical and numerical comparisons of several

related proportion estimation methods will be presented.

Numerical Optimization of Algorithms:

This task is concerned with developing numerically optimal algorithms for

use in remote sensing analysis. It is our view that the algorithms employed

in remote sensing applications be as accurate as nossible since use of

unreliable algorithms can lead to inaccurate results, and, possibly, very

erroneous interpretations. Such difficulties might be very hard to detect

when they occur and could cause considerable delays. Also, the algorithms

used should be as efficient as possible to conserve computer time and thus

the resources of the project. In the past, we have shown how the modified

Cholesky decomposition (MCD) may be employed in many computations where the

covariance matrices and their inverses are used. This has effected a

considerable savings in computation time and increased accuracy over algorithms

previously in use. Memorandum on the following applications of the MCD are

included in this report:
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1) Comnuting the average weighted divergence

2) Computing the interclass divergence (for use in calculating the

transformed divergence)

3) Performing feature selection using D. Tebbe's criterion.

Feature Selection:

Another minor project in this task is to devise arn algorithm for performing

feature selection (or extraction) using the condition numbers of the covariance

matrices as a measure of the separability of the classes. The condition number

of a matrix is defined by

cond (A) = !IAIl IA-111

where larger condition numbers represent matrices whose rows (columns) are

more nearly linearly dependent. Then the rationale for applying this measure

to the feature selection problem is to find the subspaces containing most

of the information and thus to have the rows (columns) of the covariance

matrices be as orthogonal as possible.

A program was written to select subsets of channels from Cl data and

to pick a subset of a specified size that minimized the maximum condition

number of the covariance matrices. Classification was then run using

subsets selected by the average divergence criterion (a d c). Performance

decreased relative to using channels selected by the a d c. As a next step,

we hope to examine how the condition numbers vary as the a d c selects

subsets, hopefully to gain insight into what are suitable criteria to employ

when using condition numbers as a distance measure.
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IV. TASK 3: Review of Technical Reports

G. Austin's memos "Analysis of LARS Subroutine CLASS and Recommended Coding

Improvements to Reduce Its Execution Time" and "Modifications to ERIPS

Requirements" have been reviewed. A change in priorities prevented other

reports from being reviewed.
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1. 1
RICE UNIVERSITY

Institute for Computer Services

and Applications

MEMORANDUM

DATE: Aug. 15, 1973

TO: K. Baker

FROM: D. L. Van Rooy

RE: Use of the Modified Cholesky Decomposition in Interclass Divergence
Calculation.

To compute the transformed divergence, the interclass divergence
D (i, j) is needed. An efficient and numerically stable method for computing
the D (i, j) is to employ the modified Cholesky decomposition of the covariance
matrices. This note will derive the appropriate expressions for doing this.

I. Derivation

The interclass divergence D (i, j) is given by

D (i, j) = D(i, j) + D2 (i,j) (11)

with
D1 (i, j) = 4 tr (K i - K) (K 1 - K 1 ) ] (12)

and

D2 (i,j) = tr [(Kil + KJ 1 ) (u i  ) (i j )  (1.3)

.th
where K is the 1 covariance mrnatrix; p i , the corresponding mean

victor , and tr denotes the trace. D 1 can now be simplified to

= I tr (KiK 1 ) + i tr (Kj K )-n (1.4)

where n is the order of the Ki's. Now since the Ki's are symmetric,

positive-definite, we may write (modified Cholesky decomposition).
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Ki = L i Gi L i

where Li is unit lower triangular and G i is diagonal. So we can write

. =1* *1 -1 -1l

tr K K -] =tr [ L G LL G- L

tr L L G L Lj-1 G1

j ii i

= tr TjG i ji Gj (1.5)

where
-1

Tji = L L i  and also is unit lower triangular. So (1. 5) and

a similar expression may be used to calculate D , using eq. (1. 4)

Now for D2 ,we may rewrite (1. 3) as

S * -1 -1
D2 = (ui -u ) (Ki + K ) (ui  (1. 6)

Again, then we may use

K. = L G. L.1 111

and define

3ij i  j

So (1. 6) may be rewritten as

r m * -1 -1 -1 *-1 -1 -1

2m.. (L G' L. + L. G. L ) m..i

[ i* *-1 -1 -1 * *-1 -1 -1ij
m.. L G L m.. + m.. L G L m13 i i 1J 13 ] 3 3

. G-1 , -1 + - (1.7)
= i [x'.o7 x. + x. G. x.

11 133 3



1.3

where
-1

x. = L. m..
1 1 1)

and
-1

x. = L m..J j 1J



2.1

II. Computati n of the D(i, j)

To calculate the interclass divergence D (i, j), first calculate
the modified Cholesky decomposition of the two covariance matrices K.
and K.

J
K i = L i Gi L i

K. Lj G. L

where L. and L. are unit lower triangular matrices and G. and G. areI j L

diagonal matrices. Using the notation Ki = ki  L = LrsJrs '
and Gi = {r } we can write

s = 1 s = 1,2, ... n (2.1)

gi = ki
1 11

s-1

ii i i
rs krs 9rp sp

p=l

r = s+1, s+2, ... n

i
with ers 0= for s > r. Similar expressions hold for the elements of

Srs3 3 •ir



2.2

t = 1 (2.2)
rr

tj i  i

r, r-1 r, r-1 r, r-1
r-1 . r=1, 2, ... n

ji i I JLt =i -2 - ' trs rs rs - rp ps
p=s+l

s= r-2, r-3, ... 1

Si ij
and t = 0 for s > r. Similar expressions hold for trs

rs rs

Now form
m.. = i - u (2.3)

and .. r-l
i r3 i i

x i = m - x (2.4)

r r rp pr-1
x = mr- 1 xr r rp p

p=l

where x. = i}, x. {x

Now D(i,j) is given by
n r .. 2 J + 2

D(i,j) = r(ti / +) g g +2 g gi

ir )2 +r x)2/4} - n (2.5)

So the steps to form D(i,j) are

1. Form L i , G. , L. , and G. using eqs. (2. 1)
1 1 3



2.3

2. Form Tji and Tij using eqs. (2.2)

3. Form m.ij using eq. (2. 3)

4. Form xi and x. using eqs. (2. 4)

5. Calculate D(i, j) from eq. (2. 5)



RICE UNIVERSITY

Institute for Computer Services

and Applications

MEMORANDUM

DATE: September 21, 1973

TO: K. Baker

FROM: D. .L. Van Rooy

RE: Use of the Cholesky decomposition in D. Tebbe's feature selection

Analysis

Tebbe's method of feature selection consists of using a without replace-

ment procedure for picking features, and classifying training fields to

"determine" the probability of correct classification. At first, this may

seem to be a quite time-consuming method. However, two points serve

to expedite the procedure,

(1) the without replacement procedure greatly

reduces the number of feature combinations

to be used

and

(2) by partitioning the covariance matrices and

judiciously saving appropriate results, the

amount of computation may be' greatly reduced

both in computing the inverses of these matrices

and classifying the training elements.

In his example, computation time for this method has been comparable

to the exhaustive search, without- replacement divergence calculations,
while classification accuracies have been greater than or equal to those

using this divergence computation results.

The purpose of this note is to show how the execution time of Tebbe's

method may be significantly decreased by employing the modified Cholesky

decomposition ( 2 ). We have

K = LDL*

where K is the covariance matrix, L is unit lower triangular (i.e. Lii = 1

A..= 0 for j > i ), D is a diagonal matrix and * denotes
1ij
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transpose. The logarithm of the density function of a class (within a

constant) is
f (x) = ~njn + (x-)* K-1 (x-i) (1)

where u is the corresponding mean vector. So there are two problems

to be attacked:

(i) how to economically obtain L n and 'D

given Ln-1 and Dn_1 where the

subscript denotes the order of the matrix

of the without replacement procedure),

v is a vector, and a a scalar.
and

(ii) given L and D how does one economically

K =K

i.evaluate. K is a submatrix of K. (because(.

ni=, 2, ... n-1

and

a(n) = (n-1) j = 1, 2, ... i (2b)

where(ii) given L and simiarl how does oor K and D.

evaluate eq. also
n-1 2

(n) k(n) n- ( -1)

n = j)- d (2a)

n nn p (3a)

p=l



and d(n) = d(n-) i = 1, 2, ... n - (3b)
i i

Thus L differs from Ln-1 only in the last row, and Dn differs from
n n-1

Dn-1 only in the nnth position.

We note that

K IL D L*
Kn = In n n

=ILn D4 L

IDi

n (n)IDn (4)n)

Rewriting eq. (1) we have

f(x) = K + n d y* L(n ) * D-1 - 1  y
= n n n (5)

-1Defining z = L-1 yn

z (2) with z( 2) a scalar

we obtain for the last term in (5)

-1z* Dl z

(1) D z(1) + z (2 ) 2 (n)
n-+

So (5) becomes
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f) + n-i I) + I(n + (Z(2))2/d(n) ) (6)

with
i-1 (n- 1)

z Y- zi = 1, 2, ... n-1 (7a)

j=l

(n) (2)
z =Y - nj Z. z (7b)

j=1

Sowe wee that the first two terms in eq. (6) do not depend on any values
from the n channel. Thus they may be precomputed and used with each
of the channels.

Comparing these results with Tebbe's, we note that the classification
of each point will require the same amount of computation after the leading
term (his A' ~ A ) has been computed. However, the -proposed method

O O

is faster and more numerically stable since

1) no matrix inverses need be computed, and

2) the calculation of f in Tebbe's method requires

n multiplications whereas the corresponding

calculation of (n) requires n2 multiplications.
2
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Implementation

The above results can be readily utilized in the existing program. The
following describes the changes necessary (see ref. (1))

-1[

1) Tebbe's is not computed. Instead, the modified
0

Cholesky decomposition ( = L DL * ) is computed (see
ref (2))(it could be saved from the prior case where the

best n-1 channels were computed). This yields the
(n-1) (n- 1)
A. and d. used in eqs. (2a) & (2b).

(n)
2) In place of the calculations of his e and f will be A ni

(n)
i = 1,2, ... n- and d from eqs. (2a) & (3a) in

(n-1) (n-1)
this report. (Note that the product 4. d. in

i 3

eq.- 2a may be precomputed).

(n)3) His n - e becomes en d

4) His S is now N e K 1 + (  D- 1 z(1)
o n-I

n-i n- 1
where K = d and Dn-1 = z dn-1 i= 1 n- i

i=l 1

and z. is given by eq. (7a)

1e term 0 b5) The term )2 in S inhis repot becomes z(2) 2

where z ( 2 ) is Oven by eq. (7b), - -
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The average weighted divergence may be written, following Quirein ) ,

as:

m m-I m

D= tr Ki I S n

i= 1 i=1 j=i+i (I)

where Ki is the ith covariance matrix

m is the number of classes

n is the dimensionality

and

m

Si i j ( K+ .j j ) (2)

j=1

with Wij being the weighting factors

and 8 being the difference of the means between
classes i and j
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Now we note that both the IKi and Si are symmetric, posiive-definite

matrices. Thus we may write

K. = Li Gi L i  (modified Cholesky decomposition) (3a)

and Si = Ri + R (3b)

where L. and R. are lower triangular and Gi a dicgonal1 . 1 1

-1
matrix. So the term Ki S ini eq. (1) become.s

^ 1 -1 -]Ki  S. = L1 G . L. ( R i + R )

and

tr (Ki Si) tr (G +il Li 1 L1 + L G

= tr (Qi + Q*)

= 2 tr (Qi)

where

Qi = G-1 L 1 Ri L-IG, (4)

So now eq. (1) becomes

m m- 1 m
D = tr (Qi) - n Wij (5)

i=l i =1 j=i+1

We note that only the diagonal elements of Qi are needed, -J
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SL 1 (6)
ijj i i 1 (

where (Q = (q

Gi

L. = ( with .
1 ju w.

R. =(s i)

S. = ( s

First form

Ti =  Li Ri where T i is upper triangular

which requires n (n+ 1) (n+2) multiplies
6

Then compute the diagonal elements of L.1 T. = C This also
1 1 1

n (n+1) (n+2) multiplies. So eq. (6) becomes
6

q = c gi
"33
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Thus the total number of multiplies involved is

3
2n (n+ 1) (n+ 2) + wicis

3n which is

including the multiplications necessary to perform the modified Cholesky

decomposition.

Algorithm

1). Compute the S.'s according to eq. (2) using all. channels.
1

Also compute the last term in eq. (5) .

2). Form the R.'s using eq. (3b)

i i

i. e. r. = s
jk jk

i k

i

r = 0
kj

3). For particular conbinations of channels,pick out the s, bmatrices

Ki and Ri

4). Form L i and Gi as in eq. (3a).

i k
g =k

1 11 , /



j-1 2
g = u

j=1, 2, ... n

j-1
i i i ii i i
vj u vu ju j

u=1

v = j+1, j+2, ... n

i i
with 1J = 1 and &vj = 0 for j > v

5). Compute the upper triangular elements of T i using

i i
t = r.. j=l, 2, ...

k-1i i 1
jk rkj ku uj

u= 1 k = 1, 2,...n-1

j = k+1l, k+2, ... n

6). Compute the following elements of C.
1

j-1

c =t - i ic
jk jk ju uk

u=1 k = 1, 2,.. n

j =1, 2,. .. k



r N. B. only the diagonal elements of Ci are needed but the others

are necessary for the calculation of these elements.

7). Form
m n m-1 m

D C .b g w C C ij '

i= 1 j=1 i= 1 j=i+l

the average weighted divergence.
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